New “Formal” Ru(II)-Catalyzed Cycloadditions of 1,6-Diynes to Alkenes, 1,3-Dienes and Arenealkylidenes

Carlos Saá*, Silvia G. Rubín, Jesús A. Varela and Carlos González
Departamento de Química Orgánica y Unidad Asociada al CSIC, Facultad de Química, Universidad de Santiago de Compostela
15782 Santiago de Compostela, Spain
qcsaa@usc.es

“Formal” Ru (II)-Catalyzed [4+2+2] Cycloadditions of 1,6-Diynes to 1,3-Dienes

We recently described a new “formal” ruthenium-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-di enes to give conjugated 1,3,5-cyclooctatrienes.1 Their formation could be explained in two steps: initial formation of tetraenes 3 according to the metal-catalyzed cycle showed in Figure 1 followed by thermal conrotatory electrocyclic ring closure of 3.

Interestingly, when cis-propenylfurane 2a was used, the tricyclic cyclooctatriene 5 was obtained in acceptable yield. The reaction occurs by initial formation of 4a followed by a [1,5]-hydrogen shift. However, in the case of the styrene 2b, the opened aryltriene 3b was initially obtained, which was quantitatively cyclized to arylcyclohexadiene 6 upon heating (Scheme 1).

When cyclic alkenes 7 were used, 1,3-cyclohexadienes 8 were obtained in acceptable yields. Surprisingly, when acyclic alkenes 9 were used, isomeric 1,3-cyclohexadienes 10 were obtained in rather good yields (Scheme 2).

The likely mechanism for these processes would involve the formation of ruthenacycle intermediate V. Depending on the alkene nature, two alternatives could be envisioned from V: a) the well-established reductive elimination in the case of cyclic alkenes; b) a new β-elimination + reductive elimination to give 1,3-hexadienes 11 in the case of acyclic alkenes. Final electrocyclization of 11 gave 1,3-cyclohexadienes 10.

Acknowledgement: This work was supported by the M.E.C. (Project BQU2002-02135) and Xunta de Galicia (Project PGIDT03PXIC20909PN). J.A.V. and C. G. also thank the M.E.C. for a research contract under the Ramón y Cajal program and one F.P.I fellowship (BES-2003-0839) respectively. S.G.R. thank the Segundo Gil Davila Foundation for a predoctoral fellowship.
